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mathematical models in ecology
and evolution

Journal Number of Models used | Models used | Equations!3
(2001) articles generally’ specifically?

American 105 96% 59% 58%
Naturalist

Ecology 274 100% 35% 38%
Evolution 231 100% 35% 33%

'General use: includes statistical or phylogenetic analysis with a mathematical
basis, e.g. ANOVA, regression, etc.

2Specific use: mathematical model used to obtain results
3Equations present: excluding standard statistical equations

adapted from Otto and Day (2007)



two ways we can use models to
make sense of biology

* Explain what we do see
— Specific test of hypotheses
— Example: dynamics of HIV after infection

* Predict what we might see

— Generate hypotheses

— Example: evolutionary lag and rescue with
complex life histories



Time course of HIV infection within an individual
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Time course of HIV infection within an individual
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Time course of HIV infection within an individual
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dynamical models:
describing systems that change over time

differential equations — describe the rate at which
a variable changes over time;
continuous in time

dn(t)
dt

= "some function of n(t)"

recursion equations — describe the value of a variable
in the next time step;
discrete in time

n(t + 1) = "some function of n(t)"

n' = "some function of n"



dynamical models:
describing systems that change over time

differential equations — describe the rate at which
a variable changes over time;
continuous in time

dn(t)
dt

= "some function of n(t)"



example: predator-prey model
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example: predator-prey model

prey L0 _ 9~ b2 y(©

dy(t)

redator
P dt

= —cy(t) +px(t)y(t)



example: predator-prey model

prey 20 _ 0~ b2 y©

a = growth rate of prey (hares)



example: predator-prey model

prey d;—it) =ax(t) —bx(t) y(t)

b = capture rate (death rate of prey)



example: predator-prey model

p = growth rate of predator (lynx)

predator dﬁ—ff) =px(®) y(t) —cy®)



example: predator-prey model

c = death rate of predator (lynx)

predator dﬁ—ff) =px(®)y(t) —cy(®)



Time course of HIV infection within an individual
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model of within-individual HIV infection
(Phillips 1996)

susceptible CD4+ cells d}zlit) =Tt—uR()—BV(t)R(Lt)
latently infected CD4+ cells dlc‘l_(t) =p BV(OR(t) — u L(t) — a L(¢t)
t
o dE(t)
actively infected CD4+ cells BT (1—-p)BV(E)R(E)+alL(t)— 35 E()
. . dv (t)
virus particles ——=nE({t)—aV(t)— LV(t)R(t)

dt



model of within-individual HIV infection
(Phillips 1996)

dR(t
susceptible CD4+ cells di ) =Tt—uR()—BV(t)R(Lt)
. dL(t)
latently infected CD4+ cells — =D BV(OR(t) —u L(t) — a L(t)
t
o dE(t)
actively infected CD4+ cells 7 (1—p)BV(t)R(t)+ aL(t)— 5 E(t)
predator
dV (t)

=nE({t)—aV(t)— BV(t) R(t)

virus particles
dt



model of within-individual HIV infection
(Phillips 1996)

prey

. dR(t)
susceptible CD4+ cells

dt

=Tt—pR()—BV()R(®)

latently infected CD4+ cells dlc‘l_(t) =pBV(E)R() —uL(t) —a L(t)
t

dE (t)

actively infected CD4+ cells 7 (1—p)BV(t)R(t)+ aL(t)— 5 E(t)

dv(t)

o = TE@ —aV(©) = BV R®)

virus particles
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actively infected CD4+ cells

susceptible CD4+ cells virus particles

latently infected CD4+ cells

Flow diagram for Phillips (1996) model
adapted from Otto & Day (2007)



BV () R(t)

1 R(t) uL(t)

Flow diagram for Phillips (1996) model
adapted from Otto & Day (2007)

o V(t)




't

susceptible CD4+ cells

dR(t)

—— =TT uR® -V R()

I' T = input of susceptible cells from immune system



1 R(t)

susceptible CD4+ cells

dR(t)
dt

=Tt—uR(t)—BV(t)R(t)

u = death rate of CD4+ cells



BV () R(t)

susceptible CD4+ cells

dR(t)

—— =TT—uR® -V R()

f = infection rate of susceptible cells



BV () R(t)

latently infected CD4+ cells

dL(t)

—— =P VORM®) —u L(t) — a L()

p = probability HIV in infected cell is latent



u L(t)

latently infected CD4+ cells

dL(t)

—— =P BVORE®) — pL(6) — a L(¢)

u = death rate of CD4+ cells



latently infected CD4+ cells

dL(t)

—— =P BVORE®) —u L(t) — a L()

a = conversion rate from latent to active



BV () R(t)

actively infected CD4+ cells

dE (t)
dt

1 — p = probability HIV in infected cell is active

=(1—-p)BV(Et)R(t)+alL(t)— 3§ E(t)



actively infected CD4+ cells

dE (t)
dt

=(1-p)BVE)R({t)+alL(t)— 38§ E(t)

a = conversion rate from latent to active



actively infected CD4+ cells

dE (t)
dt

=(1-p)BV(E)R({t)+alL(t)— 35 E(t)

& = death rate of actively infected CD4+ cells



virus particles

dv(t)
dt

=nE({t)—cV(t)— BV(t)R(t)

m = budding rate of virus particles from infected cells



oV(t)

virus particles

dv(t)
dt

=nE({t)—ocV(t)— BV(t)R(t)

o = clearance rate of virus particles



BV () R(t)

virus particles

dv(t)
dt

=nE({t)—oV(t)— BV(t)R(t)

B = infection rate



Number of virus particles
over time

Model: Phillips (1996)

Data: Fauci et al. (1996)
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two ways we can use models to
make sense of biology

* Predict what we might see

— Generate hypotheses

— Example: evolutionary lag and rescue with
complex life histories



tracking environmental change

fitness




tracking environmental change
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tracking environmental change
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tracking environmental change

fitness

fitness




evolutionary lag

 evolutionary lag (or lag load)

— difference between phenotypic
trait mean and its optimum

_(Z-0)°

202

Lg Maynard Smith (1976)

» greater evolutionary lag under
rapid environmental change




evolutionary rescue

demographic
decline

evolutionary rescue

population size

I time
environmental
change



complex life histories and
adaptation

* how do stage structure and clonal
reproduction affect a population’s ability to
track environmental change?




stage structure and clonality

image by
image by Forest Nadiatalent
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Life-history complexities

* mutation arising in somatic tissues
— in gametes and/or independent clonal offspring
— within-individual or somatic selection



somatic mutation

gametic agametic (clonal)
reproduction reproduction

Image: Jouko Lehmuskallio

image from Oxford Scientific



Life-history complexities

* reproduction without meiosis

— shields from higher meiotic mutation rates

— lacks genetic segregation (heterozygosity,
homozygosity)

— lacks recombination



sexual reproduction
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Life-history complexities

* clonal offspring phenotypically distinct from
sexual offspring



clonal reproduction and
Invasive spread




phenotypic evolution with stage-
structured life histories

— multivariate phenotypic trait

Z = (Zl' Z2,""" Zn)T

Z=g+e

N
s

— N; = number of individuals for each stage i
— g; = mean genotype of stage i
— Z; = mean phenotype of stage i



dynamical models:
describing systems that change over time

recursion equations — describe the value of a variable
in the next time step;
discrete in time
n(t + 1) = "some function of n(t)"

n' = "some function of n"



age-structured life history graph
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age-structured life history graph
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age-structured life history graph
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age-structured life history graph
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age-structured life history graph
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stage-structured life history graph
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sexual reproduction

f14
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clonal reproduction

C24




Explicitly considering clonal
reproduction

 three types of movements

N; —ENaU zN(tu‘l'fu‘l'Cu)

ZNtU+ZNfU+ZNCU =T, + F/ + C]

t;; = transition from stage j to stage i
fi; = sexual reproduction from stage j to stage i

¢;; = clonal reproduction from stage j to stage i



phenotypic evolution
z = phenotypic trait

z=g+e

g = additive genetic factor

e = non-additive genetic
+ random environmental factor



What makes up e?
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What makes up e?
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What makes up e?
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p = association between e in parent and clonal
offspring

p closeto 0

Joerg Hauke/Getty Imagés

p close to 1




recursions for phenotypic and genotypic

means

W=, [(dt +RAf)Z;+ (4, + 1 -R)dj)g,

Ly
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zd” g+ z dij G;j Vz; Ina;
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recursions for phenotypic and genotypic
means

zZ, = Z,- [(ditj (@ +(1-R)d)g;
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recursions for phenotypic and genotypic
means
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Simple life history

t(c+i)

@ clonal and sexual reproduction

(z, — 6)?
(2w?)
amount of clonal reproduction r.=c¢/(f + ¢)

selection on survival probability t = exp |-

60—z

w2
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analytical results — effect of clonality
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Life history
with stage structure
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Life history with stage structure

selection on juvenile survival

— tr1 =t Xp |— (.~ )
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analytical results — increased adult survival
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evolutionary lag in clonal
organisms

 analytical results

— clonality (r, o > 0) and adult survival (stage
structure) both slow approach to equilibrium
phenotype

— but both also reduce both extent and duration of
population size decrease

 demographic advantage



Individual-based simulations

single polygenic trait z

— n = 10 loci, additive allelic effects

e normally distributed, mean 0, variance 1

Hg = 10044

population size ceiling, K

relative amounts of clonal reproduction, r, = c¢/(c + f)
association parameter, p

change in optimum phenotype

— one-step change

— continuous, linear change



change in optimum phenotype

one-step change

continuous change




one-step change in optimal phenotype

clonal reproduction r,  association parameter p
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one-step change in optimal
phenotype

« greater population persistence with
more clonal reproduction (r.) and higher
environmental component association

(0)

—standing genotypic variation



one-step change in optimal
phenotype

 stage structure increases probability of
population persistence

—demographic advantage



continuous change in optimal phenotype

clonal reproduction r,  association parameter p
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continuous, linear change In
optimal phenotype

» decreased persistence and greater lag with
more clonal reproduction, higher p

—de novo genotypic variation



continuous, linear change In
optimal phenotype

 stage structure decreases persistence and
iIncreases lag

—increased generation time

—decreased N, of component of population
experiencing phenotypic selection

—maladaptive “gene flow through time”



evolutionary lag in clonal
organisms

* how will clonal organisms respond under
rapid environmental change?



evolutionary lag in clonal
organisms

* how will clonal organisms respond under
rapid environmental change?

 scale of change — whether population experiences
that change as a single transition or not



evolutionary lag in clonal
organisms

* how will clonal organisms respond under
rapid environmental change?

« amount of phenotypic matching between organisms
and their clonal offspring



evolutionary lag in clonal
organisms

* how will clonal organisms respond under
rapid environmental change?

 existence of stage structured life histories



two ways we can use models to
make sense of biology

* Explain what we do see
— Specific test of hypotheses
— Example: dynamics of HIV after infection

* Predict what we might see

— Generate hypotheses

— Example: evolutionary lag and rescue with
complex life histories
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Number of virus particles
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