Mathematical models in evolutionary research

Maria E. Orive

Ecology and Evolutionary Biology
University of Kansas

@MEOrive

NABT Professional Development Conference November 10, 2018

Scott Williamson

mathematics and biologists

mathematical models in ecology and evolution

Journal (2001)	Number of articles	Models used generally ¹	Models used specifically ²	Equations! ³
American Naturalist	105	96%	59%	58%
Ecology	274	100%	35%	38%
Evolution	231	100%	35%	33%

¹General use: includes statistical or phylogenetic analysis with a mathematical basis, e.g. ANOVA, regression, etc.

²Specific use: mathematical model used to obtain results

³Equations present: excluding standard statistical equations

two ways we can use models to make sense of biology

- Explain what we do see
 - Specific test of hypotheses
 - Example: dynamics of HIV after infection
- Predict what we might see
 - Generate hypotheses
 - Example: evolutionary lag and rescue with complex life histories

from Otto & Day (2007) data from Fauci et al. (1996)

from Otto & Day (2007) data from Fauci et al. (1996)

from Otto & Day (2007) data from Fauci et al. (1996)

dynamical models: describing systems that change over time

differential equations – describe the rate at which a variable changes over time; continuous in time

$$\frac{d n(t)}{dt} = "some function of n(t)"$$

recursion equations – describe the value of a variable in the next time step;
discrete in time

$$n(t + 1) =$$
 "some function of $n(t)$ "
 $n' =$ "some function of n "

dynamical models: describing systems that change over time

differential equations – describe the rate at which a variable changes over time; continuous in time

$$\frac{d n(t)}{dt} = "some function of n(t)"$$

recursion equations – describe the value of a variable in the next time step;

discrete in time

$$n(t + 1) =$$
 "some function of $n(t)$ "
 $n' =$ "some function of n "

prey
$$\frac{d x(t)}{dt} = a x(t) - b x(t) y(t)$$

predator
$$\frac{d y(t)}{dt} = -c y(t) + p x(t) y(t)$$

prey
$$\frac{d x(t)}{dt} = a x(t) - b x(t) y(t)$$

a = growth rate of prey (hares)

prey
$$\frac{d x(t)}{dt} = a x(t) - b x(t) y(t)$$

b = capture rate (death rate of prey)

p = growth rate of predator (lynx)

predator
$$\frac{d y(t)}{dt} = p x(t) y(t) - c y(t)$$

c = death rate of predator (lynx)

predator
$$\frac{d y(t)}{dt} = p x(t) y(t) - c y(t)$$

from Otto & Day (2007) data from Fauci et al. (1996)

model of within-individual HIV infection (Phillips 1996)

susceptible CD4+ cells
$$\frac{dR(t)}{dt} = \Gamma \tau - \mu R(t) - \beta V(t) R(t)$$

latently infected CD4+ cells
$$\frac{dL(t)}{dt} = p \ \beta V(t) R(t) - \mu \ L(t) - \alpha \ L(t)$$

actively infected CD4+ cells
$$\frac{dE(t)}{dt} = (1 - p) \beta V(t) R(t) + \alpha L(t) - \delta E(t)$$

virus particles
$$\frac{dV(t)}{dt} = \pi E(t) - \sigma V(t) - \beta V(t) R(t)$$

model of within-individual HIV infection (Phillips 1996)

susceptible CD4+ cells
$$\frac{dR(t)}{dt} = \Gamma \tau - \mu R(t) - \beta V(t) R(t)$$

latently infected CD4+ cells
$$\frac{dL(t)}{dt} = p \beta V(t)R(t) - \mu L(t) - \alpha L(t)$$

actively infected CD4+ cells
$$\frac{dE(t)}{dt} = (1 - p) \beta V(t) R(t) + \alpha L(t) - \delta E(t)$$

predator
$$\frac{dV(t)}{dt} = \pi \; E(t) - \sigma \; V(t) - \; \beta \; V(t) \; R(t)$$

model of within-individual HIV infection (Phillips 1996)

prey

susceptible CD4+ cells
$$\frac{dR(t)}{dt} = \Gamma \tau - \mu R(t) - \beta V(t) R(t)$$

latently infected CD4+ cells

$$\frac{dL(t)}{dt} = p \beta V(t)R(t) - \mu L(t) - \alpha L(t)$$

actively infected CD4+ cells

$$\frac{dE(t)}{dt} = (1 - p) \beta V(t) R(t) + \alpha L(t) - \delta E(t)$$

virus particles
$$\frac{dV(t)}{dt} = \pi E(t) - \sigma V(t) - \beta V(t) R(t)$$

$$\frac{dR(t)}{dt} = \Gamma \tau - \mu R(t) - \beta V(t) R(t)$$

$$\frac{dL(t)}{dt} = p \beta V(t) R(t) - \mu L(t) - \alpha L(t)$$

$$\frac{dE(t)}{dt} = (1 - p) \beta V(t) R(t) + \alpha L(t) - \delta E(t)$$

number of virus particles
$$\frac{dV(t)}{dt} = \pi E(t) - \sigma V(t) - \beta V(t) R(t)$$

susceptible CD4+ cells

latently infected CD4+ cells

Flow diagram for Phillips (1996) model adapted from Otto & Day (2007)

Flow diagram for Phillips (1996) model adapted from Otto & Day (2007)

susceptible CD4+ cells

$$\frac{dR(t)}{dt} = \frac{\Gamma \tau}{t} - \mu R(t) - \beta V(t) R(t)$$

 $\Gamma \tau$ = input of susceptible cells from immune system

susceptible CD4+ cells

$$\frac{dR(t)}{dt} = \Gamma \tau - \mu R(t) - \beta V(t) R(t)$$

 μ = death rate of CD4+ cells

susceptible CD4+ cells

$$\frac{dR(t)}{dt} = \Gamma \tau - \mu R(t) - \beta V(t) R(t)$$

 β = infection rate of susceptible cells

latently infected CD4+ cells

$$\frac{dL(t)}{dt} = p \beta V(t)R(t) - \mu L(t) - \alpha L(t)$$

p = probability HIV in infected cell is latent

latently infected CD4+ cells

$$\frac{dL(t)}{dt} = p \beta V(t)R(t) - \mu L(t) - \alpha L(t)$$

 μ = death rate of CD4+ cells

latently infected CD4+ cells

$$\frac{dL(t)}{dt} = p \beta V(t)R(t) - \mu L(t) - \alpha L(t)$$

 α = conversion rate from latent to active

$$\frac{dE(t)}{dt} = (1 - p) \beta V(t) R(t) + \alpha L(t) - \delta E(t)$$

1 - p = probability HIV in infected cell is active

$$\frac{dE(t)}{dt} = (1 - p) \beta V(t) R(t) + \alpha L(t) - \delta E(t)$$

 α = conversion rate from latent to active

$$\frac{dE(t)}{dt} = (1 - p) \beta V(t) R(t) + \alpha L(t) - \delta E(t)$$

 δ = death rate of actively infected CD4+ cells

virus particles

$$\frac{dV(t)}{dt} = \pi E(t) - \sigma V(t) - \beta V(t) R(t)$$

 π = budding rate of virus particles from infected cells

virus particles

$$\frac{dV(t)}{dt} = \pi E(t) - \sigma V(t) - \beta V(t) R(t)$$

 σ = clearance rate of virus particles

virus particles

$$\frac{dV(t)}{dt} = \pi E(t) - \sigma V(t) - \beta V(t) R(t)$$

 β = infection rate

Number of virus particles over time

Model: Phillips (1996)

Data: Fauci et al. (1996)

VOL. 162, NO. 1 THE AMERICAN NATURALIST JULY 2003

Linking Dynamical and Population Genetic Models of Persistent Viral Infection

John K. Kelly,1,* Scott Williamson,1 Maria E. Orive,1 Marilyn S. Smith,2 and Robert D. Holt3

Kelly, Williamson, et al. 2003 Am Nat

Adaptation in the *env* Gene of HIV-1 and Evolutionary Theories of Disease Progression

Scott Williamson

Department of Ecology and Evolutionary Biology, University of Kansas

Williamson 2003 Mol Biol Evol

A Statistical Characterization of Consistent Patterns of Human Immunodeficiency Virus Evolution Within Infected Patients

Scott Williamson,*† Steven M. Perry,† Carlos D. Bustamante,* Maria E. Orive,† Miles N. Stearns,† and John K. Kelly†

*Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York; †Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence

Williamson et al. 2005 Mol Biol Evol

two ways we can use models to make sense of biology

- Explain what we do see
 - Specific test of hypotheses
 - Example: dynamics of HIV after infection
- Predict what we might see
 - Generate hypotheses
 - Example: evolutionary lag and rescue with complex life histories

evolutionary lag

- evolutionary lag (or lag load)
 - difference between phenotypic trait mean and its optimum

$$L_{ heta} = rac{(ar{z} - heta)^2}{2\sigma_w^2}$$
 Maynard Smith (1976)

greater evolutionary lag under rapid environmental change

evolutionary rescue

complex life histories and adaptation

 how do stage structure and clonal reproduction affect a population's ability to track environmental change?

stage structure and clonality

image by Forest & Kim Starr.

image by Nadiatalent

image from Oxford Scientific

image from NOAA website

Life-history complexities

- mutation arising in somatic tissues
 - in gametes and/or independent clonal offspring
 - within-individual or somatic selection

somatic mutation

gametic reproduction

Image: Jouko Lehmuskallio

agametic (clonal) reproduction

image from Oxford Scientific

Life-history complexities

- mutation arising in somatic tissues
 - in gametes and/or independent clonal offspring
 - within-individual or somatic selection
- reproduction without meiosis
 - shields from higher meiotic mutation rates
 - lacks genetic segregation (heterozygosity, homozygosity)
 - lacks recombination

clonal reproduction α , d, i

Life-history complexities

- mutation arising in somatic tissues
 - in gametes and/or independent clonal offspring
 - within-individual or somatic selection
- reproduction without meiosis
 - shields from higher meiotic mutation rates
 - lacks genetic segregation (heterozygosity, homozygosity)
 - lacks recombination
- clonal offspring phenotypically distinct from sexual offspring

clonal reproduction and invasive spread

phenotypic evolution with stagestructured life histories

- $-N_i$ = number of individuals for each stage i
- \overline{g}_i = mean genotype of stage i
- \bar{z}_i = mean phenotype of stage i

dynamical models: describing systems that change over time

differential equations – describe the rate at which a variable changes over time; continuous in time

$$\frac{d n(t)}{dt} = "some function of n(t)"$$

recursion equations – describe the value of a variable in the next time step;
discrete in time

$$n(t + 1) =$$
 "some function of $n(t)$ "
 $n' =$ "some function of n "

$$N' = \mathbf{A} \, N \qquad \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix}' = \begin{bmatrix} 0 & f_{12} & f_{13} & f_{14} \\ s_{21} & 0 & 0 & 0 \\ 0 & s_{32} & 0 & 0 \\ 0 & 0 & s_{43} & 0 \end{bmatrix} \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix}$$

$$N' = \mathbf{A} \, N \qquad \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix}' = \begin{bmatrix} 0 & f_{12} & f_{13} & f_{14} \\ s_{21} & 0 & 0 & 0 \\ 0 & s_{32} & 0 & 0 \\ 0 & 0 & s_{43} & 0 \end{bmatrix} \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix}$$

$$N_1' = f_{12}N_2 + f_{13}N_3 + f_{14}N_4$$

$$N' = \mathbf{A} \, N \qquad \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix}' = \begin{bmatrix} 0 & f_{12} & f_{13} & f_{14} \\ s_{21} & 0 & 0 & 0 \\ 0 & s_{32} & 0 & 0 \\ 0 & 0 & s_{43} & 0 \end{bmatrix} \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix}$$

$$N_2' = s_{21}N_1$$

$$N' = \mathbf{A} \, N \qquad \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix}' = \begin{bmatrix} 0 & f_{12} & f_{13} & f_{14} \\ s_{21} & 0 & 0 & 0 \\ 0 & s_{32} & 0 & 0 \\ 0 & 0 & s_{43} & 0 \end{bmatrix} \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix}$$

$$N_3' = s_{32}N_2$$

$$N' = \mathbf{A} \, N \qquad \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix}' = \begin{bmatrix} 0 & f_{12} & f_{13} & f_{14} \\ s_{21} & 0 & 0 & 0 \\ 0 & s_{32} & 0 & 0 \\ 0 & 0 & s_{43} & 0 \end{bmatrix} \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix}$$

$$N_4' = s_{43}N_3$$

$$N' = \mathbf{A} \, N \qquad \mathbf{A} = \begin{bmatrix} 0 & f_{12} & f_{13} & f_{14} \\ t_{21} & t_{22} & t_{23} + c_{23} & c_{24} \\ 0 & t_{32} & t_{33} & t_{34} \\ 0 & 0 & t_{43} & t_{44} \end{bmatrix} \qquad N = \begin{bmatrix} N_1 \\ N_2 \\ N_3 \\ N_4 \end{bmatrix}$$

transitions

$$\begin{bmatrix} 0 & f_{12} & f_{13} & f_{14} \\ t_{21} & t_{22} & t_{23} + c_{23} & c_{24} \\ 0 & t_{32} & t_{33} & t_{34} \\ 0 & 0 & t_{43} & t_{44} \end{bmatrix}$$

sexual reproduction

$$\begin{bmatrix} 0 & f_{12} & f_{13} & f_{14} \\ t_{21} & t_{22} & t_{23} + c_{23} & c_{24} \\ 0 & t_{32} & t_{33} & t_{34} \\ 0 & 0 & t_{43} & t_{44} \end{bmatrix}$$

clonal reproduction

$$\begin{bmatrix} 0 & f_{12} & f_{13} & f_{14} \\ t_{21} & t_{22} & t_{23} + c_{23} & c_{24} \\ 0 & t_{32} & t_{33} & t_{34} \\ 0 & 0 & t_{43} & t_{44} \end{bmatrix}$$

Explicitly considering clonal reproduction

three types of movements

$$N'_{i} = \sum_{j} N_{j} \bar{a}_{ij} = \sum_{j} N_{j} (\bar{t}_{ij} + \bar{f}_{ij} + \bar{c}_{ij})$$

$$= \sum_{j} N_{j} \bar{t}_{ij} + \sum_{j} N_{j} \bar{f}_{ij} + \sum_{j} N_{j} \bar{c}_{ij} = T'_{i} + F'_{i} + C'_{i}$$

 t_{ij} = transition from stage j to stage i

 f_{ij} = sexual reproduction from stage j to stage i

 $c_{ij} = \text{clonal reproduction from stage } j \text{ to stage } i$

phenotypic evolution

z = phenotypic trait

$$z = g + e$$

g = additive genetic factor

e = non-additive genetic

+ random environmental factor

What makes up e?

sexual reproduction α

clonal reproduction α , d, i

What makes up e?

sexual reproduction α

clonal reproduction

$$\alpha$$
, d, i

non-additive genetic factors (dominance, epistatis)

What makes up e?

sexual reproduction

 α

clonal reproduction

$$\alpha$$
, d, i

non-additive genetic factors (dominance, epistatis)

+ random environmental factors

ρ = association between **e** in parent and clonal offspring

 ρ close to 0

 ρ close to 1

recursions for phenotypic and genotypic means

$$\overline{\mathbf{z}}_{i}' = \sum_{j} \left[\left(d_{ij}^{t} + \mathbf{R} d_{ij}^{c} \right) \overline{\mathbf{z}}_{j} + \left(d_{ij}^{f} + (\mathbf{I} - \mathbf{R}) d_{ij}^{c} \right) \overline{\mathbf{g}}_{j} \right. \\
+ \frac{d_{ij}}{\overline{a}_{ij}} \left(\mathbf{P}_{j} \nabla_{\overline{\mathbf{z}}_{j}} \overline{t}_{ij} + \mathbf{G}_{j} \nabla_{\overline{\mathbf{z}}_{j}} \overline{f}_{ij} + \mathbf{R} \, \mathbf{P}_{j} \nabla_{\overline{\mathbf{z}}_{j}} \overline{c}_{ij} + (\mathbf{I} - \mathbf{R}) \mathbf{G}_{j} \nabla_{\overline{\mathbf{z}}_{j}} \overline{c}_{ij} \right) \right] \\
\overline{\mathbf{g}}_{i}' = \sum_{j} d_{ij} \, \overline{\mathbf{g}}_{j} + \sum_{j} d_{ij} \, \mathbf{G}_{j} \, \nabla_{\overline{\mathbf{z}}_{j}} \, \ln \overline{\mathbf{a}}_{ij}$$

$$\begin{aligned} & \boldsymbol{P}_{j} = \text{phenotypic covariance matrix} & \boldsymbol{\nabla}_{\overline{z}_{j}} = (\partial/\partial \ \bar{z}_{1} \ , \partial/\partial \ \bar{z}_{2} \ , \cdots \ , \partial/\partial \ \bar{z}_{m})^{\mathrm{T}} \\ & \boldsymbol{G}_{j} = \text{additive genetic covariance matrix} & \boldsymbol{R} = \begin{bmatrix} \rho_{1} & 0 & \cdots & 0 \\ 0 & \rho_{2} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & \cdots & \rho_{m} \end{bmatrix} \\ & \boldsymbol{d}_{ij}^{t} = \bar{t}_{ij} N_{j} / N_{i}', \ \boldsymbol{d}_{ij}^{f} = \bar{f}_{ij} N_{j} / N_{i}', \ \boldsymbol{d}_{ij}^{c} = \bar{c}_{ij} N_{j} / N_{i}' \end{aligned}$$

recursions for phenotypic and genotypic means

$$\begin{split} \overline{\mathbf{z}}_{i}' &= \sum_{j} \left[\left(d_{ij}^{t} + \mathbf{R} d_{ij}^{c} \right) \overline{\mathbf{z}}_{j} + \left(d_{ij}^{f} + (\mathbf{I} - \mathbf{R}) d_{ij}^{c} \right) \overline{\mathbf{g}}_{j} \right. \\ &+ \frac{d_{ij}}{\overline{a}_{ij}} \left(\mathbf{P}_{j} \nabla_{\overline{\mathbf{z}}_{j}} \overline{t}_{ij} + \mathbf{G}_{j} \nabla_{\overline{\mathbf{z}}_{j}} \overline{f}_{ij} + \mathbf{R} \mathbf{P}_{j} \nabla_{\overline{\mathbf{z}}_{j}} \overline{c}_{ij} \right) + (\mathbf{I} - \mathbf{R}) \mathbf{G}_{j} \nabla_{\overline{\mathbf{z}}_{j}} \overline{c}_{ij} \right) \right] \\ \overline{\mathbf{g}}_{i}' &= \sum_{j} d_{ij} \ \overline{\mathbf{g}}_{j} + \sum_{j} d_{ij} \ \mathbf{G}_{j} \ \nabla_{\overline{\mathbf{z}}_{j}} \ \ln \overline{\mathbf{a}}_{ij} \end{split}$$

$$m{P}_j = ext{phenotypic covariance matrix}$$
 $m{G}_j = ext{additive genetic covariance matrix}$
 $ar{a}_{ij} = ar{t}_{ij} + ar{f}_{ij} + ar{c}_{ij}$
 $d_{ij} = ar{a}_{ij} N_j / N_i'$

$$\begin{aligned} & \boldsymbol{P}_{j} = \text{phenotypic covariance matrix} & \boldsymbol{\nabla}_{\overline{z}_{j}} = (\partial/\partial \ \bar{z}_{1} \ , \partial/\partial \ \bar{z}_{2} \ , \cdots \ , \partial/\partial \ \bar{z}_{m})^{\mathrm{T}} \\ & \boldsymbol{G}_{j} = \text{additive genetic covariance matrix} & \boldsymbol{R} = \begin{bmatrix} \rho_{1} & 0 & \cdots & 0 \\ 0 & \rho_{2} & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & & \rho_{m} \end{bmatrix} \\ & \boldsymbol{d}_{ij}^{t} = \bar{t}_{ij} N_{i} / N_{i}', \ \boldsymbol{d}_{ij}^{f} = \bar{f}_{ij} N_{i} / N_{i}', \ \boldsymbol{d}_{ij}^{c} = \bar{c}_{ij} N_{i} / N_{i}' \end{aligned}$$

recursions for phenotypic and genotypic means

$$\overline{\mathbf{z}}_{i}' = \sum_{j} \left[\left(d_{ij}^{t} + \mathbf{R} d_{ij}^{c} \right) \overline{\mathbf{z}}_{j} + \left(d_{ij}^{f} + (\mathbf{I} - \mathbf{R}) d_{ij}^{c} \right) \overline{\mathbf{g}}_{j} \right] \\
+ \frac{d_{ij}}{\overline{a}_{ij}} \left(\mathbf{P}_{j} \nabla_{\overline{\mathbf{z}}_{j}} \overline{t}_{ij} + \mathbf{G}_{j} \nabla_{\overline{\mathbf{z}}_{j}} \overline{f}_{ij} + \mathbf{R} \mathbf{P}_{j} \nabla_{\overline{\mathbf{z}}_{j}} \overline{c}_{ij} + (\mathbf{I} - \mathbf{R}) \mathbf{G}_{j} \nabla_{\overline{\mathbf{z}}_{j}} \overline{c}_{ij} \right] \\
\overline{\mathbf{g}}_{i}' = \sum_{i} d_{ij} \ \overline{\mathbf{g}}_{j} + \sum_{j} d_{ij} \ \mathbf{G}_{j} \ \nabla_{\overline{\mathbf{z}}_{j}} \ \ln \overline{\mathbf{a}}_{ij}$$

$$m{P}_j = ext{phenotypic covariance matrix}$$
 $m{V}_j = ext{phenotypic covariance matrix}$
 $m{G}_j = ext{additive genetic covariance matrix}$
 $m{a}_{ij} = ar{t}_{ij} + ar{f}_{ij} + ar{c}_{ij}$
 $m{R}_i$
 $m{d}_{ij} = ar{a}_{ij} N_j / N_i'$
 $m{d}_{ij}^t = ar{t}_{ij} N_j / N_i'$, $m{d}_{ij}^t = ar{f}_{ij} N_j / N_i'$, $m{d}_{ij}^c = ar{c}_{ij} N_j / N_i'$

$$\nabla_{\bar{z}_j} = (\partial/\partial \bar{z}_1, \partial/\partial \bar{z}_2, \cdots, \partial/\partial \bar{z}_m)^{\mathrm{T}}$$

$$\mathbf{R} = \begin{bmatrix} \rho_1 & 0 & \cdots & 0 \\ 0 & \rho_2 & & 0 \\ \vdots & & \ddots & \vdots \\ 0 & \cdots & & \rho_m \end{bmatrix}$$

Simple life history

clonal and sexual reproduction

selection on survival probability $t = \exp \left[-\frac{(\bar{z}_1 - \theta)^2}{(2\omega^2)} \right]$ amount of clonal reproduction $r_c = c/(f+c)$

$$\Delta \bar{z} = (1 - r_c \rho)(\bar{g} - \bar{z}) + \{r_c \rho P + (1 - r_c \rho)G\} \frac{\theta - \bar{z}}{\omega^2}$$

$$\Delta \bar{g} = G \frac{\theta - \bar{z}}{\omega^2}$$

analytical results – effect of clonality

no clonality $(r_c \rho = 0)$ vs. with clonality $(r_c \rho = 0.5)$

Life history with stage structure

Life history with stage structure

selection on juvenile survival

$$\bar{t}_{21} = t_{\text{max}} \exp \left[-\frac{(\bar{z}_1 - \theta)^2}{(2\omega^2)} \right]$$

$$r_c = c_{12}/(c_{12} + f_{12})$$

$$\bar{z}_1' = r_c \rho (\bar{z}_2 - \bar{g}_2) + \bar{g}_2$$

$$\bar{z}_2' = \bar{z}_2 + \frac{N_1}{\bar{t}_{21}N_1 + \bar{t}_{22}N_2} \bar{t}_{21} \left[(\bar{z}_1 - \bar{z}_2) + P_1 \left(\frac{\theta - \bar{z}_1}{\omega^2} \right) \right]$$

$$\bar{g}_1' = \bar{g}_2$$

$$\bar{g}_{2}' = \bar{g}_{2} + \frac{N_{1}}{\bar{t}_{21}N_{1} + \bar{t}_{22}N_{2}}\bar{t}_{21}\left[(\bar{g}_{1} - \bar{g}_{2}) + G_{1}\left(\frac{\theta - \bar{z}_{1}}{\omega^{2}}\right)\right]$$

analytical results - increased adult survival

- analytical results
 - clonality ($r_c \rho > 0$) and adult survival (stage structure) both slow approach to equilibrium phenotype
 - but both also reduce both extent and duration of population size decrease
 - demographic advantage

individual-based simulations

- single polygenic trait z
 - -n = 10 loci, additive allelic effects
- e normally distributed, mean 0, variance 1
- $\mu_{\rm g} = 100 \mu_{\rm s}$
- population size ceiling, K
- relative amounts of clonal reproduction, $r_c = c/(c + f)$
- association parameter, ho
- change in optimum phenotype
 - one-step change
 - continuous, linear change

change in optimum phenotype

one-step change

continuous change

one-step change in optimal phenotype

one-step change in optimal phenotype

- greater population persistence with more clonal reproduction (r_c) and higher environmental component association (ρ)
 - -standing genotypic variation

one-step change in optimal phenotype

- greater population persistence with more clonal reproduction (r_c) and higher environmental component association (ρ)
 - -standing genotypic variation
- stage structure increases probability of population persistence
 - -demographic advantage

continuous change in optimal phenotype

continuous, linear change in optimal phenotype

- decreased persistence and greater lag with more clonal reproduction, higher ρ
 - de novo genotypic variation

continuous, linear change in optimal phenotype

- decreased persistence and greater lag with more clonal reproduction, higher ρ
 - de novo genotypic variation
- stage structure decreases persistence and increases lag
 - increased generation time
 - decreased N_e of component of population experiencing phenotypic selection
 - maladaptive "gene flow through time"

 how will clonal organisms respond under rapid environmental change?

- how will clonal organisms respond under rapid environmental change?
- scale of change whether population experiences that change as a single transition or not

- how will clonal organisms respond under rapid environmental change?
- scale of change whether population experiences that change as a single transition or not
- amount of phenotypic matching between organisms and their clonal offspring

- how will clonal organisms respond under rapid environmental change?
- scale of change whether population experiences that change as a single transition or not
- amount of phenotypic matching between organisms and their clonal offspring
- existence of stage structured life histories

two ways we can use models to make sense of biology

- Explain what we do see
 - Specific test of hypotheses
 - Example: dynamics of HIV after infection
- Predict what we might see
 - Generate hypotheses
 - Example: evolutionary lag and rescue with complex life histories

acknowledgments

Orive Lab
Carlos Fernandez
Anna Goddard

Collaborators
Michael Barfield (U Florida)
Bob Holt (U Florida)

KU McNair Scholars Program

questions?

Website: http://www.orive.faculty.ku.edu/

Email: morive@ku.edu

Twitter: @MEOrive